Course Outline

BE 7350: Advanced Instrumentation and Control for Biological Systems

Instrumentation theory [Weeks 1-2]

Sensing and measurement;

Transducers:

Analog and digital measurement systems.

Control concepts [Weeks 3-4]

Feedback loops;

Measurement;

Laplace transform methods;

Classical (analog) control theory;

Digital control theory.

Relevant properties of biological systems: [Weeks 5-6]

Spatial and temporal heterogeneity;

Stochasticity; emergent properties;

Growth:

Reproduction and death;

Trophic levels;

Environmental and ecological issues and complexity.

Advanced Instrumentation and Control: Integration: [Weeks 7-8]

Applications of Modeling and Simulation;

Adaptive Control;

Specific Examples of Design and Control Simulation Languages:

Matlab

Femlab

Applications in Biological Engineering.

Midterm after week 8

Project Work [Weeks 9-15]

Final Project Suggested Application Areas:

Environmental Applications: [Review Weeks 9]

<u>Environmental monitoring</u>: automated systems for environmental monitoring (e.g. LA State Climatology Project; Theegala-bioreactors);

Agricultural Applications: [Review Week 10]

<u>Aquacultural Applications</u>: Automated monitoring and control in recirculating aquaculture systems (Timmons; Hall; Malone; Rusch).

<u>Precision or Prescription Farming</u>: (Barbosa, Smith) GPS and GIS applications in agriculture and related areas.

<u>Composting Applications</u>: (Hall) Measurement and control of biodegradation systems.

Autonomous Vehicles: [Week 11] (Hall)

<u>Improvements in autonomy</u> of land, air and water based vehicles; <u>Power systems</u> (e.g. solar photovoltaic, batteries; AC/DC power options); <u>Control mechanisms</u> (e.g. servos); control processors (e.g. BASIC Stamp)

Biosensors/Biomedical: [Week 12] (Monroe, Hayes possible contributors)

Applications of instrumentation with and in biosystems.

Protein interactions "proteiomics";

Measurement of physiologically relevant variables;

Biomedical applications (Greatbatch and biomedical history).

<u>Food and Bioprocess Engineering Automation</u>: [Week 13] (Sabliov, Boldor possible contributors)

Automated equipment in the food processing industry;

Extrusion processes;

Rice Mill operations.

Final Projects and Presentation Due: [Weeks 14-15]

Reference Reading List Steven G. Hall, Assoc. Professor, 578-1049 cell 281-9454.

Dally, James W., William F. Riley and Kenneth G. McConnell, 1993. <u>Instrumentation for Engineering Measurements</u>, Second Edition. John Wiley and Sons: New York, 584 pp.

Doeblin, Ernest O., 1990. <u>Measurement Systems, Application and Design, Fourth Edition</u>. McGraw Hill: New York, 960 pp.

Franklin, Gene F., J.David Powell and Michael L. Workman, 1990. <u>Digital Control of Dynamic Systems</u>. Addison-Wesley: Reading Mass, 841 pp.

Karnopp, Dean C., Donald L. Margolis and Ronald C. Rosenberg, 1990. <u>System Dynamics, A Unified Approach, Second Edition</u>. John Wiley and Sons: New York, 514 pp.

Mohsenin, Nuri N., 1986. <u>Physical properties of plant and animal materials: structure, physical characteristics, and mechanical properties.</u> New York: Gordon and Breach, 891 pp.

Norton, Harry N., 1989. <u>Handbook of Transducers</u>. Prentice Hall: Englewood Cliffs, NJ, 554 pp.

Ogata, Katsuhiko, 1990. <u>Modern Control Engineering, Second Edition</u>. Prentice Hall: Englewood Cliffs, NJ, 963 pp.

Omega Catalogs: www.omega.com.

Park, Joon Bu. Biomaterials: an introduction, 1979. New York: Plenum Press. 251 pp.

Parallax website: www.parallaxinc.com

Shahian, B. and Michael Hassul, 1993. <u>Control System Design Using MATLAB</u>. Prentice Hall: Englewood Cliffs NJ, 503 pp.

Stark, G.B. and R. Horch, 1998. <u>Biological matrices and tissue reconstruction</u>. New York: Springer-Verlag.

BE 7350 Spring 2012 Course Outline

Date	Topic
1/17	Introduction, instrumentation review (Omega materials)
1/24a	Control concepts; digital mathematics
1/24b	Biological applications introduction*
1/31a	Datalogger basics
1/31b	Datalogger applications; Project Discussion*
2/7a	Analog Control Theory (P,I,D) Review*
2/7b	Digital Control Theory Review; Preliminary Project Proposals Due
2/14a	Minidataloggers: Boxcar/Hobo; Stamp; Arduino; ARM others*
2/14b	Microcontroller theory and introduction (Smith) Project Proposals Due
2/21	(Mardi Gras) Independent work on Projects
2/28a	Discussion Class: Autonomy (Smith et al) Independent work on Projects
2/28b	Control system simulation: MATLAB, SIMULINK *
3/6	Midterm, Project Updates Due
3/13a	Discussion: Biological System Properties (Hall leading)*
3/13b	Guest Lecture: Biotechnology Applications TBA
3/20a	Integration of Instrumentation, Control and Biological Systems
3/20b	Discussion: Environmental/Aquacultural Issues (student led)*
3/27a	Environmental Applications (Hall and Guests)
3/27b	Discussion: Biomed and Environmental Issues Interface (TBA)
4/3a	Discussion: Bioprocess Applications (Guests TBA)
4/3b	Discussion: Measurement and Control in the Biosphere (Guests TBA)
4/6-15	Spring Break: Final Presentations to Follow as Shown
4/17	Student Presentations; Ag, Env; Biomed (Students)**
4/24	Student Presentations: Biosensors; Bioprocess; Biotech (Students)**
5/1	Conclusion, Party! (under control?) Final Reports due 5/1/09

^{*} Student presentation/facilitation of peer reviewed articles.
** Student presentations of final research reports

Possible guest lecturers include: Saidu; Smith; Hayes; Sabliov; Boldor; Theegala; Dugas, Chiu