ME, ECE, BE Capstone Design Programs

Pipe Lifting Device and I-Rod Fastener

Project 20: William Addison, Rachelle Giroir, Leslie Goldberg, Jake Murphy, Inna Pantiushenko, Kenneth Zielewski

Objective

To design and manufacture a compact device capable of lifting a corroded pipe safely off of its support. To design and manufacture a device to permanently fasten an I-Rod pipe support on to an existing supporting beam.
Engineering Specifications

Lift Device	I-Rod fastener
Pipe Size 2-20"	Pipe Size 2-20"
10 years of service	3-30" 1 -Rods long
6.2 tons lift capacity	$1^{\prime \prime}$ and 1.5" 1 -Rods in diameter
$6^{\prime \prime}$ - maximum lifting heights	W14×26; W12×26; W10×22 I-beam
50 lbs - maximum device weight	ST3×8.625 and WT3×10 for structural supports
2 or less operators	Galvanized steel or stainless steel
5 - safety factor (to fail)	10 years in service
250 use per year frequency	

Analysis

Force Required to Lift Pipe

$$
y=-\frac{P l^{3}}{48 E I}+\frac{5 w l^{4}}{384 E I} \stackrel{\prod|I|| | I I T!}{\Delta}
$$

Finite-element analysis of the pipe saddle shows that while lifting 6.15 tons, the maximum stress is 21 ksi , which provides a factor of safety of roughly 3.3 for the 70 ksi filler metal.

$P=$ load

$L=$ length
$E=$ modulus of elasticity
$I=$ moment of inertia
W = weight per unit length

Sponsor: Tony Brouillette

Special thanks to DOM

Conclusion

Through physical testing and extensive analysis, the lift device has been proven to lift and withhold loads required by Dow. The lift was easily operable by two men, being assembled in less than five minutes. All components performed as expected. The I-rod fastener has been proven to withhold the expected forces seen between the 1 -rod and supported pipe through computational analysis.

Advisor: Dr. Sunggook Park

