To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Clay Blanchard (ME), Jason Campisi (EE), Philip De La Vergne (ME), Matthew Medick (ME), Preston Spyridon (ME), Brian Stutzman (EE), Jason Zimmer (ME)

Background

- **Task**: Develop a Reusable **Rocket-Glider Platform and Experimental Rocket Motor** Test Stand.
- Compatible with Different Types and Diameters of Rocket Motors, Including Hybrid Rockets.
- **Purpose**: Future Testing Platform for End Burning Hybrid Motor Concept.

Objectives

- 1. Design, build, fly, and recover a functional rocket glider vehicle that meets the required customer specifications.
- 2. Design, assemble, and test Potassium Nitrate/Sorbitol (KNSB) rocket motors.

Customer Requirements

Rocket Glider Customer Requirements:

- Execute controlled vertical ascent using rocket propulsion.
- Achieve altitude between 1000 -2000 ft.
- Return to ground in controlled, lift-assisted descent.
- Designed reusability (Launch & Recovery survivability).
- Must be safe to operate.

Sponsors: Dr. Adam Baran, The Louisiana Space Consortium (LaSPACE)

Team 29: Khaos Rocket Glider

College of Engineering Department of **Mechanical & Industrial Engineering**

