To Predict > To Design > To Perform

ME, ECE, BE Capstone Design Programs

Team #38 A Roll-To-Roll Nanoimprint Lithography Device Xavier Allen, Matthew Cannon, John Grove, Conrad Kuebel

Background:

Nanoimprint lithography is a fast throughput, accurate way to imprint nano and micro structures on a variety of membranes

Objectives:

- Design a Roll-To-Roll Imprint lithography device that is small and continuous
- Achieve a micropattern with recognizable patterns of 10 micrometers
- Allow for either thermal or ultraviolet curing

Engineering Specifications:		Imprint Lith
Specification	Target Value	Resin /
Minimum Nanostructure Size	> 100 µm	
Transverse Speed	< 1 in/s	
Types of Lithography	Thermal	
Consistency of Coating	+/ - 1 μm	

Safety:

- External components exposed to the user will remain at a temperature of less than 120°F
- Acrylic case will keep device dust-free, while
- keeping operators at a safe distance
- Taped sections will indicate danger zones where pinch points, or heated areas are present

Sponsor: Sunggook Park

College of Engineering Department of **Mechanical & Industrial Engineering**

Figure 2: Covered prototype

Control System:

- motor shields
- adjustable via LabVIEW

Analysis:

- enhance the resolution
- temperature of 150 °C

Adviser: Ying Wang

Controlled by two Arduino microcontrollers with

Arduino sketches are interfaced with LabVIEW Temperature, tension, force, and speed are Instruments powered 12/24V DC and 115 V AC

Designed to minimize vibration worth high quality bearings, shaft accuracy, and ridged design to Estimated 47 seconds required to prebake at a